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Disclaimer

The slides are intended to serve as records for a recitation for math
244 course. It should never serve as any replacement for formal
lectures or as any reviewing material. The author is not responsible
for consequences brought by inappropriate use.

There may be errors. Use them at your own discretion. Anyone who
notify me with an error will get some award in grade points.
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How to check if a function is a solution of an ODE/IVP

All you need to do is to put the function into the ODE.

Example: Check if the function y(t) = et + t is a solution of the IVP

y ′′ − y ′ = 0, y(0) = 1, y ′(0) = 1.

Since y ′(t) = et + 1, y ′′(t) = et , one can compute that

y ′′ − y ′ = et − et − 1 = −1 ̸= 0.

Therefore y(t) is not a solution to our IVP.

Another Example: Check if the function y(t) = 2et + 3 is a solution
of the IVP

y ′′ − y ′ = 0, y(0) = 5, y ′(0) = 2.

Since y ′(t) = 2et , y ′′(t) = 2et , we have y ′′(t) = y ′(t) so it satisfies
the ODE. And you need to check if the initial values are satisfied.
Since y(0) = 2e0 + 3 = 5, y ′(0) = 2e0 = 2, the function fits the
initial value and therefore y(t) = 2et + 3 is a solution of the IVP.
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Remark

Checking if a given function is a solution of some ODE would be the
most basic technique for the 244 course.

And nothing much is
involved except taking derivatives.

It is a good habit to check EVERY solution you obtained. In some
sections of 244, this is mandatory: if an answer is submitted without
being checked, then it won’t be graded. (I’m not sure if I should
require the same)

Also some checking may draw important conclusions. Here is an
example:
Exercise: Check that the following functions

y1(t) = cos 2t, y2(t) = sin 2t, y3(t) = 2 cos 2t + 3 sin 2t,

y4(t) = 10000 cos 2t + 0.0001 sin 2t

are solutions for
y ′′ + 4y = 0.

And what reasonable guess can you make?

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 4 / 22



. . . . . .

Remark

Checking if a given function is a solution of some ODE would be the
most basic technique for the 244 course. And nothing much is
involved except taking derivatives.

It is a good habit to check EVERY solution you obtained. In some
sections of 244, this is mandatory: if an answer is submitted without
being checked, then it won’t be graded. (I’m not sure if I should
require the same)

Also some checking may draw important conclusions. Here is an
example:
Exercise: Check that the following functions

y1(t) = cos 2t, y2(t) = sin 2t, y3(t) = 2 cos 2t + 3 sin 2t,

y4(t) = 10000 cos 2t + 0.0001 sin 2t

are solutions for
y ′′ + 4y = 0.

And what reasonable guess can you make?

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 4 / 22



. . . . . .

Remark

Checking if a given function is a solution of some ODE would be the
most basic technique for the 244 course. And nothing much is
involved except taking derivatives.

It is a good habit to check EVERY solution you obtained.

In some
sections of 244, this is mandatory: if an answer is submitted without
being checked, then it won’t be graded. (I’m not sure if I should
require the same)

Also some checking may draw important conclusions. Here is an
example:
Exercise: Check that the following functions

y1(t) = cos 2t, y2(t) = sin 2t, y3(t) = 2 cos 2t + 3 sin 2t,

y4(t) = 10000 cos 2t + 0.0001 sin 2t

are solutions for
y ′′ + 4y = 0.

And what reasonable guess can you make?

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 4 / 22



. . . . . .

Remark

Checking if a given function is a solution of some ODE would be the
most basic technique for the 244 course. And nothing much is
involved except taking derivatives.

It is a good habit to check EVERY solution you obtained. In some
sections of 244, this is mandatory:

if an answer is submitted without
being checked, then it won’t be graded. (I’m not sure if I should
require the same)

Also some checking may draw important conclusions. Here is an
example:
Exercise: Check that the following functions

y1(t) = cos 2t, y2(t) = sin 2t, y3(t) = 2 cos 2t + 3 sin 2t,

y4(t) = 10000 cos 2t + 0.0001 sin 2t

are solutions for
y ′′ + 4y = 0.

And what reasonable guess can you make?

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 4 / 22



. . . . . .

Remark

Checking if a given function is a solution of some ODE would be the
most basic technique for the 244 course. And nothing much is
involved except taking derivatives.

It is a good habit to check EVERY solution you obtained. In some
sections of 244, this is mandatory: if an answer is submitted without
being checked, then it won’t be graded.

(I’m not sure if I should
require the same)

Also some checking may draw important conclusions. Here is an
example:
Exercise: Check that the following functions

y1(t) = cos 2t, y2(t) = sin 2t, y3(t) = 2 cos 2t + 3 sin 2t,

y4(t) = 10000 cos 2t + 0.0001 sin 2t

are solutions for
y ′′ + 4y = 0.

And what reasonable guess can you make?

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 4 / 22



. . . . . .

Remark

Checking if a given function is a solution of some ODE would be the
most basic technique for the 244 course. And nothing much is
involved except taking derivatives.

It is a good habit to check EVERY solution you obtained. In some
sections of 244, this is mandatory: if an answer is submitted without
being checked, then it won’t be graded. (I’m not sure if I should
require the same)

Also some checking may draw important conclusions. Here is an
example:
Exercise: Check that the following functions

y1(t) = cos 2t, y2(t) = sin 2t, y3(t) = 2 cos 2t + 3 sin 2t,

y4(t) = 10000 cos 2t + 0.0001 sin 2t

are solutions for
y ′′ + 4y = 0.

And what reasonable guess can you make?

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 4 / 22



. . . . . .

Remark

Checking if a given function is a solution of some ODE would be the
most basic technique for the 244 course. And nothing much is
involved except taking derivatives.

It is a good habit to check EVERY solution you obtained. In some
sections of 244, this is mandatory: if an answer is submitted without
being checked, then it won’t be graded. (I’m not sure if I should
require the same)

Also some checking may draw important conclusions. Here is an
example:

Exercise: Check that the following functions

y1(t) = cos 2t, y2(t) = sin 2t, y3(t) = 2 cos 2t + 3 sin 2t,

y4(t) = 10000 cos 2t + 0.0001 sin 2t

are solutions for
y ′′ + 4y = 0.

And what reasonable guess can you make?

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 4 / 22



. . . . . .

Remark

Checking if a given function is a solution of some ODE would be the
most basic technique for the 244 course. And nothing much is
involved except taking derivatives.

It is a good habit to check EVERY solution you obtained. In some
sections of 244, this is mandatory: if an answer is submitted without
being checked, then it won’t be graded. (I’m not sure if I should
require the same)

Also some checking may draw important conclusions. Here is an
example:
Exercise: Check that the following functions

y1(t) = cos 2t,

y2(t) = sin 2t, y3(t) = 2 cos 2t + 3 sin 2t,

y4(t) = 10000 cos 2t + 0.0001 sin 2t

are solutions for
y ′′ + 4y = 0.

And what reasonable guess can you make?
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. . . . . .

Homework Problem: The Newton Cooling Model, Part(a)

The model reads
du

dt
= −k(u − T ), u(0) = u0,

where k > 0 is a constant number, T is a constant, representing the
ambient temperature.
To solve it, simply separate the variables and then integrate:

du

u − T
= −kdt

⇒ ln(u − T ) = −kt + C

⇒ u − T = Ce−kt .

Use the initial condition to get

u(t) = (u0 − T )e−kt + T .

This solves Part (a).
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. . . . . .

Homework Problem: The Newton Cooling Model, Part(b)

For Part (b), the problem asks for a τ satisfying

u(τ)− T =
u0 − T

2
.

Use the result obtained in Part (a), one has

(u0 − T )e−kτ + T − T =
u0 − T

2

⇒ (u0 − T )e−kτ =
u0 − T

2

⇒ e−kτ =
1

2

⇒ −kτ = ln
1

2
⇒ kτ = ln 2.
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. . . . . .

Comment: the absolute value issue

Question: Why you don’t have to care about the absolute value?

Let’s keep the absolute value and let’s avoid abusing the notation. From
the intercepted step

ln |u − T | = −kt + C

above, we have
|u − T | = eCe−kt

So
either u − T = eCe−kt + T or u − T = −eCe−kt + T .
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. . . . . .

Comment: the absolute value issue

Strictly speaking, what we have obtained are

THREE branches of solutions.

u1(t) = Ae−kt + T ,A > 0;

u2(t) = −Be−kt + T ,B > 0;

u3(t) = T

(Where does u3 come from? When you get u1, u2, you assumed u ̸= T so
1/(u − T ) makes sense. u3(t) arises when you remove this assumption)

Exercise: Check that u3(t) = T is a solution of the differential equation
u′ = −k(u − T ).

And the solution obtained by our conventional method, namely

u(t) = Ce−kt + T ,

actually UNIFIES of these three branches (u1 corresponds to C > 0, u2
corresponds to C < 0 and u3 corresponds to C = 0). So we LOSE NO
INFORMATION ignoring the absolute value.
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The direction field in the quiz
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In the quiz today, you are asked to
mimic a computer in drawing direc-
tion fields of

y ′ = −1

4
(y − 1)(y − 5)

. In review:

When y = 0, y ′ = −5/4. So
you draw a line element of slope
−5/4.
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Direction field vs Solution

You can certainly solve y ′ = −(y − 1)(y − 5)/4 by the following
procedure

dy

dt
= −(y − 1)(y − 5)

4

⇒ 4

(y − 1)(y − 5)
dy = −dt(You should know how to break)

⇒
(

1

y − 5
− 1

y − 1

)
dy = −dt

⇒ ln |y − 5| − ln |y − 1| = −t + C

⇒ ln

∣∣∣∣y − 5

y − 1

∣∣∣∣ = −t + C

⇒ y − 5

y − 1
= Ce−t .
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. . . . . .

Direction field vs Solution

In this case, using the algebraic expression

y − 5

y − 1
= Ce−t ,

you are still able to tell the properties shown by the direction field,
that y = 1 and y = 5 are equilibrium solutions, y = 1 is unstable,
y = 5 is stable, etc..

But think about the equation

y ′ = sin y ,

the solution for which can be obtained by separating variables and
integrating csc y , namely

ln | csc y + cot y | = −t + C .

Certainly you can still tell something from this algebraic expression.
But that requires some more intricate trigonometric than you are
familiar with.

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 19 / 22



. . . . . .

Direction field vs Solution

In this case, using the algebraic expression

y − 5

y − 1
= Ce−t ,

you are still able to tell the properties shown by the direction field,

that y = 1 and y = 5 are equilibrium solutions, y = 1 is unstable,
y = 5 is stable, etc..

But think about the equation

y ′ = sin y ,

the solution for which can be obtained by separating variables and
integrating csc y , namely

ln | csc y + cot y | = −t + C .

Certainly you can still tell something from this algebraic expression.
But that requires some more intricate trigonometric than you are
familiar with.

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 19 / 22



. . . . . .

Direction field vs Solution

In this case, using the algebraic expression

y − 5

y − 1
= Ce−t ,

you are still able to tell the properties shown by the direction field,
that y = 1 and y = 5 are equilibrium solutions, y = 1 is unstable,
y = 5 is stable,

etc..

But think about the equation

y ′ = sin y ,

the solution for which can be obtained by separating variables and
integrating csc y , namely

ln | csc y + cot y | = −t + C .

Certainly you can still tell something from this algebraic expression.
But that requires some more intricate trigonometric than you are
familiar with.

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 19 / 22



. . . . . .

Direction field vs Solution

In this case, using the algebraic expression

y − 5

y − 1
= Ce−t ,

you are still able to tell the properties shown by the direction field,
that y = 1 and y = 5 are equilibrium solutions, y = 1 is unstable,
y = 5 is stable, etc..

But think about the equation

y ′ = sin y ,

the solution for which can be obtained by separating variables and
integrating csc y , namely

ln | csc y + cot y | = −t + C .

Certainly you can still tell something from this algebraic expression.
But that requires some more intricate trigonometric than you are
familiar with.

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 19 / 22



. . . . . .

Direction field vs Solution

In this case, using the algebraic expression

y − 5

y − 1
= Ce−t ,

you are still able to tell the properties shown by the direction field,
that y = 1 and y = 5 are equilibrium solutions, y = 1 is unstable,
y = 5 is stable, etc..

But think about the equation

y ′ = sin y ,

the solution for which can be obtained by separating variables and
integrating csc y , namely

ln | csc y + cot y | = −t + C .

Certainly you can still tell something from this algebraic expression.
But that requires some more intricate trigonometric than you are
familiar with.

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 19 / 22



. . . . . .

Direction field vs Solution

In this case, using the algebraic expression

y − 5

y − 1
= Ce−t ,

you are still able to tell the properties shown by the direction field,
that y = 1 and y = 5 are equilibrium solutions, y = 1 is unstable,
y = 5 is stable, etc..

But think about the equation

y ′ = sin y ,

the solution for which can be obtained by separating variables and
integrating csc y ,

namely

ln | csc y + cot y | = −t + C .

Certainly you can still tell something from this algebraic expression.
But that requires some more intricate trigonometric than you are
familiar with.

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 19 / 22



. . . . . .

Direction field vs Solution

In this case, using the algebraic expression

y − 5

y − 1
= Ce−t ,

you are still able to tell the properties shown by the direction field,
that y = 1 and y = 5 are equilibrium solutions, y = 1 is unstable,
y = 5 is stable, etc..

But think about the equation

y ′ = sin y ,

the solution for which can be obtained by separating variables and
integrating csc y , namely

ln | csc y + cot y | = −t + C .

Certainly you can still tell something from this algebraic expression.
But that requires some more intricate trigonometric than you are
familiar with.

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 19 / 22



. . . . . .

Direction field vs Solution

In this case, using the algebraic expression

y − 5

y − 1
= Ce−t ,

you are still able to tell the properties shown by the direction field,
that y = 1 and y = 5 are equilibrium solutions, y = 1 is unstable,
y = 5 is stable, etc..

But think about the equation

y ′ = sin y ,

the solution for which can be obtained by separating variables and
integrating csc y , namely

ln | csc y + cot y | = −t + C .

Certainly you can still tell something from this algebraic expression.

But that requires some more intricate trigonometric than you are
familiar with.

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 19 / 22



. . . . . .

Direction field vs Solution

In this case, using the algebraic expression

y − 5

y − 1
= Ce−t ,

you are still able to tell the properties shown by the direction field,
that y = 1 and y = 5 are equilibrium solutions, y = 1 is unstable,
y = 5 is stable, etc..

But think about the equation

y ′ = sin y ,

the solution for which can be obtained by separating variables and
integrating csc y , namely

ln | csc y + cot y | = −t + C .

Certainly you can still tell something from this algebraic expression.
But that requires some more intricate trigonometric than you are
familiar with.

Fei Qi (Rutgers University) Recitation 3 February 13, 2014 19 / 22



. . . . . .

Direction field vs Solution

By contrast, let’s look at the direction field of y ′ = sin y .

You will
find a handwritten draft of the direction field for y ′ = sin y here:
http://math.rutgers.edu/∼fq15/244F13/Quiz1-0001.jpg

From the graph, it is immediate that

y = kπ, k = 0,±1,±2, · · ·

are equilibrium solutions of the equation, with

y = 2kπ, k = 0,±1,±2, · · ·

being unstable, and

y = (2k + 1)π, k = 0,±1,±2, · · ·

being stable.
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. . . . . .

Summary of the direction field

The direction fields tells you how solutions behave WITHOUT
REFERRING TO WHAT THE SOLUTION IS.

Sometimes even the
solutions don’t tell you that.

You can draw direction fields for any first order equations
y ′ = f (x , y), no matter how ugly f (x , y) is. That’s why direction
fields are useful.

For interested students who wants to see how to draw direction fields by
hand for non-autonomous ODEs, please watch MIT Lecture 1, 13:49 to
20:11 for general guidelines and 20:11 to the end for examples.
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. . . . . .

The End
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